
django-pgcrypto-expressions
Documentation

Release 0.1

Carl Meyer

January 11, 2016

Contents

1 Prerequisites 3

2 Installation 5

3 Setup 7

4 Usage 9
4.1 Field types . 9

5 Encryption Key 11

6 Indexing, constraints, lookups, and ordering 13

7 Contributing 15

i

ii

django-pgcrypto-expressions Documentation, Release 0.1

pgcrypto for Django models.

Contents 1

http://www.postgresql.org/docs/9.4/static/pgcrypto.html

django-pgcrypto-expressions Documentation, Release 0.1

2 Contents

CHAPTER 1

Prerequisites

django-pgcrypto-expressions supports Django 1.8.2 and later on Python 2.7, 3.4, pypy, and pypy3. Post-
greSQL is required.

3

http://www.djangoproject.com/

django-pgcrypto-expressions Documentation, Release 0.1

4 Chapter 1. Prerequisites

CHAPTER 2

Installation

django-pgcrypto-expressions is available on PyPI. Install it with:

pip install django-pgcrypto-expressions

5

https://pypi.python.org/pypi/django-pgcrypto-expressions/

django-pgcrypto-expressions Documentation, Release 0.1

6 Chapter 2. Installation

CHAPTER 3

Setup

Your database must have the pgcrypto extension installed. You can install it by running CREATE EXTENSION
pgcrypto;.

7

http://www.postgresql.org/docs/9.4/static/pgcrypto.html

django-pgcrypto-expressions Documentation, Release 0.1

8 Chapter 3. Setup

CHAPTER 4

Usage

Just import and use the included field classes in your models:

from django.db import models
from pgcrypto_expressions.fields import EncryptedTextField

class MyModel(models.Model):
name = EncryptedTextField()

You can assign values to and read values from the name field as usual, but the values will automatically be encrypted
using pgcrypto’s pgp_sym_encrypt function when you save it, and decrypted using pgp_sym_decrypt when
you load it from the database.

4.1 Field types

Several other field classes are included: EncryptedCharField, EncryptedEmailField,
EncryptedIntegerField, EncryptedDateField, and EncryptedDateTimeField. All field
classes accept the same arguments as their non-encrypted versions.

To create an encrypted version of some other custom field class, inherit from both EncryptedField and the other
field class:

from pgcrypto_expressions.fields import EncryptedField
from somewhere import MyField

class MyEncryptedField(EncryptedField, MyField):
pass

9

django-pgcrypto-expressions Documentation, Release 0.1

10 Chapter 4. Usage

CHAPTER 5

Encryption Key

By default your SECRET_KEY setting is used as the encryption and decryption key. You can override this by setting
a PGCRYPTO_KEY setting.

Alternatively, if you are using multiple databases, you can specify a PGCRYPTO_KEY per database in your
DATABASES setting. For example:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'PGCRYPTO_KEY': 'super_secret_key',
...

},
'secondary': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'PGCRYPTO_KEY': 'totally_different_secret_key',
...

},
}

Warning: Since encryption is performed on the database server, your encryption key is sent to the database
server with each query involving an encrypted field. In order to protect your key, you should only connect to your
database with a TLS-protected connection. It is possible that your key could be exposed to an attacker with access
to the database server via the pg_stat_activity table or query logs.
For an encrypted-fields solution that encrypts and decrypts on the application side to avoid this problem, see
django-fernet-fields.

11

https://github.com/orcasgit/django-fernet-fields

django-pgcrypto-expressions Documentation, Release 0.1

12 Chapter 5. Encryption Key

CHAPTER 6

Indexing, constraints, lookups, and ordering

One advantage of encrypting and decrypting within the database is that encrypted fields may still be used in any type
of lookup or database expression, and queries may be ordered by an encrypted field.

However, indexing an encrypted field is not possible without storing the decryption key in the index expression (de-
feating the value of the encryption), so while lookups can be made against encrypted fields, those lookups or orderings
cannot be indexed, meaning their performance will degrade with the size of the table.

Similarly, unique or check constraints can’t be applied to encrypted fields.

13

django-pgcrypto-expressions Documentation, Release 0.1

14 Chapter 6. Indexing, constraints, lookups, and ordering

CHAPTER 7

Contributing

See the contributing docs.

15

https://github.com/orcasgit/django-pgcrypto-expressions/blob/master/CONTRIBUTING.rst

	Prerequisites
	Installation
	Setup
	Usage
	Field types

	Encryption Key
	Indexing, constraints, lookups, and ordering
	Contributing

